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LETTER TO THE EDITOR

Quantum integrable systems and Clebsch—Gordan series. |

A M Perelomov

Depto. Fsica Tebrica, Univ. de Zaragoza, 50009 Zaragoza, Spain
Received 22 May 1997, in final form 10 October 1997

Abstract. The class of quantum integrable systems associated with root systems was introduced
as a generalization of the Calogero—Sutherland systems. In this letter, a new property of such
systems is proved to be valid. Namely, in the case of the potentigl = sin"? 4, the series
for the product of two wavefunctions coincides with the Clebsch—Gordan series. This gives the
recursive relations for the wavefunctions of such systems and for generalized spherical functions
related to them on symmetric spaces.

One conjectures that the Clebsch—Gordan series is also unchanged under more general
two-parametric deformationd( ¢)-deformation).

1. Introduction

The class of quantum integrable systems associated with root systems was introduced in
[8] (see also [9]) as the generalization of the Calogero—Sutherland systems [1, 14]. Such
systems depend on one real parametéthe type A—D—E), on two parameters (the type

B,., C,, F, andG>) and on three parameters for the tyR€,. These parameters are related

to the coupling constants of the quantum system.

The change of parameters defines a deformation of Weyl formulae [18] for characters
of the compact simple Lie groups & 1) and correspondingly for zonal spherical functions
on symmetric spaces [2, 3] (at special valuex pfor examplex = % 2,4).

This class has many remarkable properties. We only mention that the wavefunctions
of such systems are a natural generalization of special functions (hypergeometric functions)
for the case of several variables. The history of the problem and some results can be found
in [10]. Here we shall consider another such property: the product of two wavefunctions is
a finite linear combination of analogous functions, namely of functions which appeared in
the corresponding Clebsch—Gordan series. In other words, this deformatitaigrmation)
does not change the Clebsch—Gordan series. For the rank 1, we get the well-known cases
of the Legendre, Gegenbauer and Jacobi polynomials and the limiting cases of the Laguerre
and Hermite polynomials (see for example [15]). Some other cases were considered more
recently in [5,16,12,17,7,6,13]. Note that this approach not only gives new results, but
also a new insight into some old ones.

We conjecture that these results remain valid for the more gengral-deformation
introduced by Macdonald [7].

1 On leave of absence from Institute for Theoretical and Experimental Physics, 117259 Moscow, Russia. E-mail
address: perelomo@posta.unizar.es
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2. General description

The systems under consideration are described by the Hamiltonian (for more details see
[10])

H=3p*+Ul@  p’=@p.p)=)_p’ (2.1)
j=1
wherep = (p1,..., p), pj = —i%, is a momentum vector operator, apd= (g1, - - ., q;)
J

is a coordinate one in thedimensional vector spac€ ~ R/ with the standard scalar
product(a, g). They are a generalization of the Calogero—Sutherland systems [1, 14] for
which {a} = {e; — ¢;}, {¢;} is a standard basis . The potentiall (¢) is constructed by
means of the certain system of vect®$ = {«} in V (the so-called root system):

U= giv(g) da = (o, q) 85 = Kok = 1). (2.2)
aeRt
The constants satisfy the condition = g, if («, @) = (B, B). Such systems are completely
integrable foru(g) of five types. Here we only consider the casev@f) = sin 4.

3. Root systems

We give here only basic definitions. For more details see [4, 7, 11].

Let V be al-dimensional real vector space with a standard scalar produgt
(o, B) = Y a;B;, and lets, be the reflection in the hyperplane through the origin orthogonal
to the vectorw

Sag =q — (g, ") a’ = 2/(a, a))a. (3.1)

Consider a finite set of nonzero vectats= {«} generatingV and satisfying the following
conditions:

(1) for any« € R, the reflections, conservesR:s,R = R;

(2) for all «, B € R, we have(a", B) € Z.

The set{s,} generates the finite grouy’ (R) (the Weyl group ofR). The root system
R is called a reduced one if only vectors i collinear tox are +«. Let us choose the
hyperplane which does not contain the root. Then the root sy&emR* | JR~, andR™
is the set of positive roots. IR™ there is the basis (simple root§),, ..., o} such that
anya € R*, o =) ;nja;,n; > 0. The root systenr is called irreducible if it cannot be
union of two nonempty subsef®; and R, which are orthogonal to each other.

Let {a1, ..., a;} be the set of simple roots iR, R be the set of positive roots and
{A;} be a dual basis or the weight basig;, o) = §j«.

Let O be the root lattice an@)* be the cone of positive roots

] 1
0= {ﬂ:ﬁ:ijaj,mj GZ} ot = {y:y:Zn_,-aj,n_,- EN}. 3.2)
j=1 j=1
Let P be the weight lattice an@®™ be the cone of dominant weights:
] ]
P:{)\,)\.I mj)»j,mJ-eZ} P+={M:M=an)\,j,nj€N}. (33)
j=1 j=1

According to [16, 7] we define a partial order ghas followsi > p if and only if
A—wpe QF(or(x,A;) = (u, Ay forall j =1,...,1). The set of linear combinations over
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R of the functionsf; (¢) = exp{2i(x, ¢)}, > € P,q € V may be considered as the group
algebraA overR of the free Abelian groupP. For any\ € P, let & ~ f,.(q) denote the
corresponding element of, so that ée* = &+, (€)1 = e* and € = 1, the identity
element ofA. Then &, » € P form anR-basis ofA.

The Weyl groupW (R) acts onP and hence also od : s(€¢*) = e* for s € W and
L € P. Let A" denote the subalgebra @f-invariant elements ofi. Since each¥-orbit
in P contains exactly one point i#*, the monomial symmetric functions

my= Yy € re Pt (3.4)

new-r

form anR-basis ofAY.

4. Clebsch—Gordan series

The Schédinger equation for the quantum system related to the root sy#&ewith
v(¢ge) = SIN2 ¢4, go = (g, «) has the form

L 42
d
HY* = E(x) W~ H=-N+ Y kalka —1)sin?q, A=) —5  (41)
aeRt j=1 aqj
and for the ground-state wavefunction we have
() = [] Singa)  ka=xp  if (@ a)=(B.B)

a€eR™
Eot)=(v,y)  y= ) ket (4.2)
a€eRt

Substituting¥; = ®4 W5 we obtain
—ARDS =g (k) DX A = Ay + AY &,.(k) = E; (k) — Eo(k). (4.3)
Here the operatoAf takes the form

Ay =3 |orf’ka(COtge) da 3y = (@, ) ) = (a,0).  (4.4)

aeR*

It is easy to see thar* mapsA" into AW and
Am; = (A + 2p(k), A)m; + lower terms 2k) = Zkaa, o« € RY. (4.5)

Soe&,(k) = (A 4+ 2p(k), ) and 5 =) Clcm, we Pt

HSA

From this,
PyPY = Y Cp()P5  vePr. (4.6)

v<A+u

In fact, we could obtain a stronger condition by using the orthogonality properti®$ @f)
which follow from the self-adjointness of the operatdr

/éi(qﬂ’f(q) du(g) =0 if A+ du (q) = ¥ (q)1>dg. (4.7)
Namely,

Chc) =0 if / Y DY du(q) = 0. (4.8)
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But @ is the eigenfunction of\* and hence should have the fod§. So

PRy = Y Ch ()P ve Pt (4.9)
A—a<v<Atpu
or
PPi(q) = Y, Ch)P(g)  veP (4.10)
veDi(p,A)

Here D1(u, A) is the set ofv defined by conditions
Auy <v<i+u ve Pt (4.12)

w1 = w is the highest weight andy is the lowest weight of the weight diagrafy), defined

by w.
Note that in the case when alle P*

Di(p, A) D D,(2) (4.12)
where D, (1) is defined by the formula
D,(») = (D, +x) NP+, (4.13)

Here D, is the weight diagram defined by the dominant weight 111.
As it was shown in [16] the set aof in (4.9) for alls € W should satisfy the condition

V=A+Q1 At uy SA+spt <A+ U seWw. (4.14)

Lemma.Let the weighto satisfies the condition
py <50 < (4.15)

for all s € W. Theno belongs to the weight diagra®,,, i = 1.

Proof. It is evident that ifc € D,, thenso also belongs taD,, and condition (4.15) is
satisfied. Let us suppose now that D,, but

Uy SO < U1

and consider the s&, = {0;} = {sjo:s; € W}. Let oy be the highest weight ang,, be
the lowest weight inO,. Thenoy = s10 € P andoy > py1; 0 = syo andoy < uy.
In other words, in this case; defines the weight diagram®,, such thato; > w1 which
contradicts (4.15). O

Theorem 1The x-deformed Clebsch—Gordan series has the form

LDy = > Cp()DY (4.16)
veD, (L)
or
PRy = Y Ch (k)P (4.17)

veD; (u)
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5. A, case

In this case, the representation is characterized by the integer non-negative ryanebr
we have the differential equation fdr;

— ()" + 2k cotx (PF)') = & (k) Df f'=df/dx. (5.1)
The solution normalized by the conditiob; (0) = 1 has the form

@f (x) = ¢/ (k) P (2) 7 = 2COoSx Pf~7 atz > oo (5.2

where P/ (z) ~ Cf(z/2) andCf(z) is the Gegenbauer polynomial.
The «k-deformed Clebsch—-Gordan series now takes the form
m—+n
Pr@)PfR) = Y Ch, ()P (2) (5.3)
I=|m—n]|
wherel has the same parity @ +n). The coefficient€’,  («) may be calculated explicitly.
For the simplest case we have

nn — 14 2«) . (5.4)
n—14+K)(n+«k)
The quantityd, (x) = ¢;(x) = P“(2) may be considered asw@deformed dimension of
irreducible representations of the Lie algeldra We haved, ,1(k) = 2d, (k) —a, (k)d,_1(x),
do = 1, d; = 2. From this, we obtaid, (x) = (2«),/(k),, where(k), = (K)(k+1)... (k +
n— 1), (K)o =1

ZPE(D) = PAa@ + a(OP () an(k) =

6. A, case

In this case, the functio®; is determined by two integer non-negative numbersind
n:u = mi1 + niy, Wherer; anda, are two fundamental weights. Also it is a solution of
(4.3) with &,,,,, = m? +n? 4+ mn + 3« (m + n), X = cun(K)PY . PX = m,+ lower terms.
The Clebsch—-Gordan series 8] (z1, z2) is given by formula (4.16).

Let us give an example foP; = Py = z1:

ZlP}Z,n = PnI;+1,n + Am,n (K)P'Z’n71 + bm,n (K)szflanrl (61)

wherea,, »(k), b » (k) are rational functions of. The formula forPj; Py, is analogous.
Note thatPf, = P, P§, = P§,, i.e. do not depend on.

So we could express,, ,, through P for I <n, and Py,
correspondingly.

To find the coefficientsi,,, («), b, (k) we consider equation (4.3) in new variablgs
andz, which are characters of two fundamental representations, of

through P for k < m,

71 = EX[Z(Ziql) + EXFXZiqg) + exp(2iq3) 2 =171. (62)
Denoting the derivative8; = 9/9dz1, 3, = 9/9z2, we have
— A = (22 = 322)0% + (22 — 320)9% + (2122 — 99102 + (3 + 1)(2101 + 2202). (6.3)

Note thatA* is self-adjoint in the space of functiondz, z7) with the norm [5]

L N

w(z,7) = —z%22 + 423 4 473 — 187 + 27
where D is a bounded domain defined by the cuwéz, 7) = 0.
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The ponnomiaIP,’,‘q(zl, z»2) has the form

Pz’;q :ZCZZ(K)ZTZZ m+n<p+gq m—n=p-—gqg(mod 3. (6.4)
From (4.3) and (6.3) one can find a few first coefficientsPjf (z1, z2)
: q(qg —1) : p(p—-1
Cpirg20) == —7  Clhntd=- """ (6.5)

a pq(3k? + ax + B)
C i, 1) =— .
p=a k+p—Dk+qg—-—DZk+p+qg-1
Herea = —[2pg —3(p+q) +4]andp = —(p+q — D(p —D(g - D).
By using (6.5) and (6.6) we obtain the explicit expression for coefficiepis«) and
b (1) in (6.1)

(6.6)

nmn+m+r)yn—1+2¢)n+m—1+ 3k)
nm+xK)n+m+2)n—1+x)n+m— 1+ 2)
_ om(m—1+2)
S mA4k)m—14+«)
and than the recursive formula fdy,, (x):
Bdyn () = dm1,0 (k) + A (K n—1(K) + b o () —1,+1(K). (6.9)
We have also

(6.7)

Amn =

mn

(6.8)

3k +1
2 +1
Solving the recursive relation (6.9) with the initial condition (6.10) we obtain the explicit

expression fot,,, () which is thex-deformed Weyl formula for the dimension of irreducible
representations of the Lie algebsa

_ (2K)m(2K)n(3K)I71+n _ _
dpn () = O 2o Kp=Kkk~+1...(k+n-1). (6.11)

A more detailed version of this letter will be published elsewhere.

doo(k) =1 dio(k) =doa(x) =3 di1(k) =6 (6.10)

In conclusion, | would like to thank the Department of Theoretical Physics of Zaragoza
University for the hospitality.
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