Quantum integrable systems and Clebsch - Gordan series. I

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 31 L31
(http://iopscience.iop.org/0305-4470/31/1/005)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.121
The article was downloaded on 02/06/2010 at 06:23

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Quantum integrable systems and Clebsch-Gordan series. I

A M Perelomov \dagger
Depto. Física Teórica, Univ. de Zaragoza, 50009 Zaragoza, Spain

Received 22 May 1997, in final form 10 October 1997

Abstract

The class of quantum integrable systems associated with root systems was introduced as a generalization of the Calogero-Sutherland systems. In this letter, a new property of such systems is proved to be valid. Namely, in the case of the potential $v(q)=\sin ^{-2} q$, the series for the product of two wavefunctions coincides with the Clebsch-Gordan series. This gives the recursive relations for the wavefunctions of such systems and for generalized spherical functions related to them on symmetric spaces.

One conjectures that the Clebsch-Gordan series is also unchanged under more general two-parametric deformation ((q, t)-deformation).

1. Introduction

The class of quantum integrable systems associated with root systems was introduced in [8] (see also [9]) as the generalization of the Calogero-Sutherland systems [1, 14]. Such systems depend on one real parameter κ (the type $A-D-E$), on two parameters (the type B_{n}, C_{n}, F_{4} and G_{2}) and on three parameters for the type $B C_{n}$. These parameters are related to the coupling constants of the quantum system.

The change of parameters defines a deformation of Weyl formulae [18] for characters of the compact simple Lie groups $(\kappa=1)$ and correspondingly for zonal spherical functions on symmetric spaces $[2,3]$ (at special values of κ, for example $\kappa=\frac{1}{2}, 2,4$).

This class has many remarkable properties. We only mention that the wavefunctions of such systems are a natural generalization of special functions (hypergeometric functions) for the case of several variables. The history of the problem and some results can be found in [10]. Here we shall consider another such property: the product of two wavefunctions is a finite linear combination of analogous functions, namely of functions which appeared in the corresponding Clebsch-Gordan series. In other words, this deformation (κ-deformation) does not change the Clebsch-Gordan series. For the rank 1, we get the well-known cases of the Legendre, Gegenbauer and Jacobi polynomials and the limiting cases of the Laguerre and Hermite polynomials (see for example [15]). Some other cases were considered more recently in $[5,16,12,17,7,6,13]$. Note that this approach not only gives new results, but also a new insight into some old ones.

We conjecture that these results remain valid for the more general (q, t)-deformation introduced by Macdonald [7].

[^0]
2. General description

The systems under consideration are described by the Hamiltonian (for more details see [10])

$$
\begin{equation*}
H=\frac{1}{2} p^{2}+U(q) \quad p^{2}=(p, p)=\sum_{j=1}^{l} p_{j}^{2} \tag{2.1}
\end{equation*}
$$

where $p=\left(p_{1}, \ldots, p_{l}\right), p_{j}=-\mathrm{i} \frac{\partial}{\partial q_{j}}$, is a momentum vector operator, and $q=\left(q_{1}, \ldots, q_{l}\right)$ is a coordinate one in the l-dimensional vector space $V \sim \mathbb{R}^{l}$ with the standard scalar product (α, q). They are a generalization of the Calogero-Sutherland systems [1, 14] for which $\{\alpha\}=\left\{e_{i}-e_{j}\right\},\left\{e_{j}\right\}$ is a standard basis in V. The potential $U(q)$ is constructed by means of the certain system of vectors $R^{+}=\{\alpha\}$ in V (the so-called root system):

$$
\begin{equation*}
U=\sum_{\alpha \in R^{+}} g_{\alpha}^{2} v\left(q_{\alpha}\right) \quad q_{\alpha}=(\alpha, q) \quad g_{\alpha}^{2}=\kappa_{\alpha}\left(\kappa_{\alpha}-1\right) \tag{2.2}
\end{equation*}
$$

The constants satisfy the condition $g_{\alpha}=g_{\beta}$, if $(\alpha, \alpha)=(\beta, \beta)$. Such systems are completely integrable for $v(q)$ of five types. Here we only consider the case of $v(q)=\sin ^{-2} q$.

3. Root systems

We give here only basic definitions. For more details see [4, 7, 11].
Let V be a l-dimensional real vector space with a standard scalar product (,), $(\alpha, \beta)=\sum \alpha_{j} \beta_{j}$, and let s_{α} be the reflection in the hyperplane through the origin orthogonal to the vector α

$$
\begin{equation*}
s_{\alpha} q=q-\left(q, \alpha^{\vee}\right) \alpha \quad \alpha^{\vee}=(2 /(\alpha, \alpha)) \alpha . \tag{3.1}
\end{equation*}
$$

Consider a finite set of nonzero vectors $R=\{\alpha\}$ generating V and satisfying the following conditions:
(1) for any $\alpha \in R$, the reflection s_{α} conserves R : $s_{\alpha} R=R$;
(2) for all $\alpha, \beta \in R$, we have $\left(\alpha^{\vee}, \beta\right) \in \mathbb{Z}$.

The set $\left\{s_{\alpha}\right\}$ generates the finite group $W(R)$ (the Weyl group of R). The root system R is called a reduced one if only vectors in R collinear to α are $\pm \alpha$. Let us choose the hyperplane which does not contain the root. Then the root system $R=R^{+} \cup R^{-}$, and R^{+} is the set of positive roots. In R^{+}there is the basis (simple roots) $\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ such that any $\alpha \in R^{+}, \alpha=\sum_{j} n_{j} \alpha_{j}, n_{j} \geqslant 0$. The root system R is called irreducible if it cannot be union of two nonempty subsets R_{1} and R_{2} which are orthogonal to each other.

Let $\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ be the set of simple roots in R, R^{+}be the set of positive roots and $\left\{\lambda_{j}\right\}$ be a dual basis or the weight basis: $\left(\lambda_{j}, \alpha_{k}\right)=\delta_{j k}$.

Let Q be the root lattice and Q^{+}be the cone of positive roots
$Q=\left\{\beta: \beta=\sum_{j=1}^{l} m_{j} \alpha_{j}, m_{j} \in \mathbb{Z}\right\} \quad Q^{+}=\left\{\gamma: \gamma=\sum_{j=1}^{l} n_{j} \alpha_{j}, n_{j} \in \mathbb{N}\right\}$.
Let P be the weight lattice and P^{+}be the cone of dominant weights:

$$
\begin{equation*}
P=\left\{\lambda: \lambda=\sum_{j=1}^{l} m_{j} \lambda_{j}, m_{j} \in \mathbb{Z}\right\} \quad P^{+}=\left\{\mu: \mu=\sum_{j=1}^{l} n_{j} \lambda_{j}, n_{j} \in \mathbb{N}\right\} . \tag{3.3}
\end{equation*}
$$

According to $[16,7]$ we define a partial order on P as follows $\lambda \geqslant \mu$ if and only if $\lambda-\mu \in Q^{+}$(or $\left(\lambda, \lambda_{j}\right) \geqslant\left(\mu, \lambda_{j}\right)$ for all $\left.j=1, \ldots, l\right)$. The set of linear combinations over
\mathbb{R} of the functions $f_{\lambda}(q)=\exp \{2 \mathrm{i}(\lambda, q)\}, \lambda \in P, q \in V$ may be considered as the group algebra A over \mathbb{R} of the free Abelian group P. For any $\lambda \in P$, let $\mathrm{e}^{\lambda} \sim f_{\lambda}(q)$ denote the corresponding element of A, so that $\mathrm{e}^{\lambda} \mathrm{e}^{\mu}=\mathrm{e}^{\lambda+\mu}$, ($\left.\mathrm{e}^{\lambda}\right)^{-1}=\mathrm{e}^{-\lambda}$ and $\mathrm{e}^{0}=1$, the identity element of A. Then $\mathrm{e}^{\lambda}, \lambda \in P$ form an \mathbb{R}-basis of A.

The Weyl group $W(R)$ acts on P and hence also on $A: s\left(\mathrm{e}^{\lambda}\right)=\mathrm{e}^{s \lambda}$ for $s \in W$ and $\lambda \in P$. Let A^{W} denote the subalgebra of W-invariant elements of A. Since each W-orbit in P contains exactly one point in P^{+}, the monomial symmetric functions

$$
\begin{equation*}
m_{\lambda}=\sum_{\mu \in W \cdot \lambda} \mathrm{e}^{\mu} \quad \lambda \in P^{+} \tag{3.4}
\end{equation*}
$$

form an \mathbb{R}-basis of A^{W}.

4. Clebsch-Gordan series

The Schrödinger equation for the quantum system related to the root system R with $v\left(q_{\alpha}\right)=\sin ^{-2} q_{\alpha}, q_{\alpha}=(q, \alpha)$ has the form
$H \Psi^{\kappa}=E(\kappa) \Psi^{\kappa} \quad H=-\Delta_{2}+\sum_{\alpha \in R^{+}} \kappa_{\alpha}\left(\kappa_{\alpha}-1\right) \sin ^{-2} q_{\alpha} \quad \Delta_{2}=\sum_{j=1}^{l} \frac{\partial^{2}}{\partial q_{j}^{2}}$
and for the ground-state wavefunction we have

$$
\begin{align*}
& \Psi_{0}^{\kappa}(q)=\prod_{\alpha \in R^{+}}\left(\sin q_{\alpha}\right)^{\kappa_{\alpha}} \quad \kappa_{\alpha}=\kappa_{\beta} \quad \text { if }(\alpha, \alpha)=(\beta, \beta) \\
& E_{0}(\kappa)=(\gamma, \gamma) \quad \gamma=\sum_{\alpha \in R^{+}} \kappa_{\alpha} \alpha . \tag{4.2}
\end{align*}
$$

Substituting $\Psi_{\lambda}^{\kappa}=\Phi_{\lambda}^{\kappa} \Psi_{0}^{\kappa}$ we obtain
$-\Delta^{\kappa} \Phi_{\lambda}^{\kappa}=\varepsilon_{\lambda}(\kappa) \Phi_{\lambda}^{\kappa} \quad \Delta^{\kappa}=\Delta_{2}+\Delta_{1}^{\kappa} \quad \varepsilon_{\lambda}(\kappa)=E_{\lambda}(\kappa)-E_{0}(\kappa)$.
Here the operator Δ_{1}^{κ} takes the form

$$
\begin{equation*}
\Delta_{1}^{\kappa}=\frac{1}{2} \sum_{\alpha \in R^{+}}|\alpha|^{2} \kappa_{\alpha}\left(\cot q_{\alpha}\right) \partial_{\alpha} \quad \partial_{\alpha}=(\alpha, \partial) \quad|\alpha|^{2}=(\alpha, \alpha) \tag{4.4}
\end{equation*}
$$

It is easy to see that Δ^{κ} maps A^{W} into A^{W} and
$\Delta^{\kappa} m_{\lambda}=(\lambda+2 \rho(\kappa), \lambda) m_{\lambda}+$ lower terms $\quad 2 \rho(\kappa)=\sum_{\alpha} \kappa_{\alpha} \alpha, \alpha \in R^{+}$.
So $\varepsilon_{\lambda}(\kappa)=(\lambda+2 \rho(\kappa), \lambda) \quad$ and $\quad \Phi_{\lambda}^{\kappa}=\sum_{\mu \leqslant \lambda} C_{\lambda}^{\mu}(\kappa) m_{\mu} \quad \mu \in P^{+}$.
From this,

$$
\begin{equation*}
\Phi_{\lambda}^{\kappa} \Phi_{\mu}^{\kappa}=\sum_{\nu \leqslant \lambda+\mu} C_{\lambda \mu}^{\nu}(\kappa) \Phi_{v}^{\kappa} \quad \nu \in P^{+} \tag{4.6}
\end{equation*}
$$

In fact, we could obtain a stronger condition by using the orthogonality properties of $\Phi_{\lambda}^{\kappa}(q)$ which follow from the self-adjointness of the operator H

$$
\begin{equation*}
\int \bar{\Phi}_{\lambda}^{\kappa}(q) \Phi_{\nu}^{\kappa}(q) \mathrm{d} \mu(q)=0 \quad \text { if } \lambda \neq \mu \quad \mathrm{d} \mu(q)=\left|\Psi_{0}^{\kappa}(q)\right|^{2} \mathrm{~d}^{l} q \tag{4.7}
\end{equation*}
$$

Namely,

$$
\begin{equation*}
C_{\mu \lambda}^{\nu}(\kappa)=0 \quad \text { if } \int \bar{\Phi}_{\nu}^{\kappa} \Phi_{\lambda}^{\kappa} \Phi_{\mu}^{\kappa} \mathrm{d} \mu(q)=0 \tag{4.8}
\end{equation*}
$$

But $\bar{\Phi}_{v}^{\kappa}$ is the eigenfunction of Δ^{κ} and hence should have the form $\Phi_{\tilde{v}}^{\kappa}$. So

$$
\begin{equation*}
\Phi_{\mu}^{\kappa} \Phi_{\lambda}^{\kappa}=\sum_{\lambda-\tilde{\mu} \leqslant \nu \leqslant \lambda+\mu} C_{\mu \lambda}^{v}(\kappa) \Phi_{v}^{\kappa} \quad v \in P^{+} \tag{4.9}
\end{equation*}
$$

or

$$
\begin{equation*}
\Phi_{\mu}^{\kappa}(q) \Phi_{\lambda}^{\kappa}(q)=\sum_{v \in D_{1}(\mu, \lambda)} C_{\mu \lambda}^{v}(\kappa) \Phi_{v}^{\kappa}(q) \quad v \in P^{+} \tag{4.10}
\end{equation*}
$$

Here $D_{1}(\mu, \lambda)$ is the set of v defined by conditions

$$
\begin{equation*}
\lambda+\mu_{N} \leqslant v \leqslant \lambda+\mu_{1} \quad v \in P^{+} \tag{4.11}
\end{equation*}
$$

$\mu_{1}=\mu$ is the highest weight and μ_{N} is the lowest weight of the weight diagram D_{μ} defined by μ.

Note that in the case when all $\nu \in P^{+}$

$$
\begin{equation*}
D_{1}(\mu, \lambda) \supset D_{\mu}(\lambda) \tag{4.12}
\end{equation*}
$$

where $D_{\mu}(\lambda)$ is defined by the formula

$$
\begin{equation*}
D_{\mu}(\lambda)=\left(D_{\mu}+\lambda\right) \cap P^{+} . \tag{4.13}
\end{equation*}
$$

Here D_{μ} is the weight diagram defined by the dominant weight $\mu=\mu_{1}$.
As it was shown in [16] the set of v in (4.9) for all $s \in W$ should satisfy the condition

$$
\begin{equation*}
v=\lambda+\tilde{\mu} \quad \lambda+\mu_{N} \leqslant \lambda+s \tilde{\mu} \leqslant \lambda+\mu_{1} \quad s \in W . \tag{4.14}
\end{equation*}
$$

Lemma. Let the weight σ satisfies the condition

$$
\begin{equation*}
\mu_{N} \leqslant s \sigma \leqslant \mu_{1} \tag{4.15}
\end{equation*}
$$

for all $s \in W$. Then σ belongs to the weight diagram $D_{\mu}, \mu=\mu_{1}$.

Proof. It is evident that if $\sigma \in D_{\mu}$, then $s \sigma$ also belongs to D_{μ} and condition (4.15) is satisfied. Let us suppose now that $\sigma \notin D_{\mu}$, but

$$
\mu_{N} \leqslant \sigma \leqslant \mu_{1}
$$

and consider the set $\mathcal{O}_{\sigma}=\left\{\sigma_{j}\right\}=\left\{s_{j} \sigma: s_{j} \in W\right\}$. Let σ_{1} be the highest weight and σ_{M} be the lowest weight in \mathcal{O}_{σ}. Then $\sigma_{1}=s_{1} \sigma \in P^{+}$and $\sigma_{1}>\mu_{1} ; \sigma_{M}=s_{M} \sigma$ and $\sigma_{M}<\mu_{N}$. In other words, in this case σ_{1} defines the weight diagram $D_{\sigma_{1}}$ such that $\sigma_{1}>\mu_{1}$ which contradicts (4.15).

Theorem 1. The κ-deformed Clebsch-Gordan series has the form

$$
\begin{equation*}
\Phi_{\mu}^{\kappa} \Phi_{\lambda}^{\kappa}=\sum_{v \in D_{\mu}(\lambda)} C_{\mu \lambda}^{v}(\kappa) \Phi_{v}^{\kappa} \tag{4.16}
\end{equation*}
$$

or

$$
\begin{equation*}
\Phi_{\mu}^{\kappa} \Phi_{\lambda}^{\kappa}=\sum_{\nu \in D_{\lambda}(\mu)} C_{\mu \lambda}^{\nu}(\kappa) \Phi_{\nu}^{\kappa} . \tag{4.17}
\end{equation*}
$$

5. A_{1} case

In this case, the representation is characterized by the integer non-negative number l, and we have the differential equation for Φ_{l}^{K}

$$
\begin{equation*}
-\left(\left(\Phi_{l}^{\kappa}\right)^{\prime \prime}+2 \kappa \cot x\left(\Phi_{l}^{\kappa}\right)^{\prime}\right)=\varepsilon_{l}(\kappa) \Phi_{l}^{\kappa} \quad f^{\prime}=\mathrm{d} f / \mathrm{d} x \tag{5.1}
\end{equation*}
$$

The solution normalized by the condition $\Phi_{l}^{\kappa}(0)=1$ has the form

$$
\begin{equation*}
\Phi_{l}^{\kappa}(x)=c_{l}(\kappa) P_{l}^{\kappa}(z) \quad z=2 \cos x \quad P_{l}^{\kappa} \sim z^{l} \quad \text { at } z \rightarrow \infty \tag{5.2}
\end{equation*}
$$

where $P_{l}^{\kappa}(z) \sim C_{l}^{\kappa}(z / 2)$ and $C_{l}^{\kappa}(z)$ is the Gegenbauer polynomial.
The κ-deformed Clebsch-Gordan series now takes the form

$$
\begin{equation*}
P_{m}^{\kappa}(z) P_{n}^{\kappa}(z)=\sum_{l=|m-n|}^{m+n} C_{m n}^{l}(\kappa) P_{l}^{\kappa}(z) \tag{5.3}
\end{equation*}
$$

where l has the same parity as $(m+n)$. The coefficients $C_{m n}^{l}(\kappa)$ may be calculated explicitly. For the simplest case we have

$$
\begin{equation*}
z P_{n}^{\kappa}(z)=P_{n+1}^{\kappa}(z)+a_{n}(\kappa) P_{n-1}^{\kappa}(z) \quad a_{n}(\kappa)=\frac{n(n-1+2 \kappa)}{(n-1+\kappa)(n+\kappa)} \tag{5.4}
\end{equation*}
$$

The quantity $d_{n}(\kappa)=c_{n}^{-1}(\kappa)=P_{n}^{\kappa}(2)$ may be considered as a κ-deformed dimension of irreducible representations of the Lie algebra A_{1}. We have $d_{n+1}(\kappa)=2 d_{n}(\kappa)-a_{n}(\kappa) d_{n-1}(\kappa)$, $d_{0}=1, d_{1}=2$. From this, we obtain $d_{n}(\kappa)=(2 \kappa)_{n} /(\kappa)_{n}$, where $(\kappa)_{n}=(\kappa)(\kappa+1) \ldots(\kappa+$ $n-1),(\kappa)_{0}=1$.

6. A_{2} case

In this case, the function Φ_{μ}^{κ} is determined by two integer non-negative numbers m and $n: \mu=m \lambda_{1}+n \lambda_{2}$, where λ_{1} and λ_{2} are two fundamental weights. Also it is a solution of (4.3) with $\varepsilon_{m n}=m^{2}+n^{2}+m n+3 \kappa(m+n)$, $\Phi_{m n}^{\kappa}=c_{m n}(\kappa) P_{m n}^{\kappa} ; P_{m n}^{\kappa}=m_{\mu}+$ lower terms. The Clebsch-Gordan series for $P_{\mu}^{\kappa}\left(z_{1}, z_{2}\right)$ is given by formula (4.16).

Let us give an example for $P_{\mu}^{\kappa}=P_{1,0}^{\kappa}=z_{1}$:

$$
\begin{equation*}
z_{1} P_{m, n}^{\kappa}=P_{m+1, n}^{\kappa}+a_{m, n}(\kappa) P_{m, n-1}^{\kappa}+b_{m, n}(\kappa) P_{m-1, n+1}^{\kappa} \tag{6.1}
\end{equation*}
$$

where $a_{m, n}(\kappa), b_{m, n}(\kappa)$ are rational functions of κ. The formula for $P_{01}^{\kappa} P_{m n}^{\kappa}$ is analogous. Note that $P_{1,0}^{\kappa} \equiv P_{1,0}^{1}, P_{0,1}^{\kappa} \equiv P_{0,1}^{1}$, i.e. do not depend on κ.

So we could express $P_{m, n+1}^{\kappa}$ through $P_{k l}^{\kappa}$ for $l \leqslant n$, and $P_{m+1, n}^{\kappa}$ through $P_{k l}^{\kappa}$ for $k \leqslant m$, correspondingly.

To find the coefficients $a_{m n}(\kappa), b_{m n}(\kappa)$ we consider equation (4.3) in new variables z_{1} and z_{2} which are characters of two fundamental representations of A_{2}

$$
\begin{equation*}
z_{1}=\exp \left(2 \mathrm{i} q_{1}\right)+\exp \left(2 \mathrm{i} q_{2}\right)+\exp \left(2 \mathrm{i} q_{3}\right) \quad z_{2}=\bar{z}_{1} \tag{6.2}
\end{equation*}
$$

Denoting the derivatives $\partial_{1}=\partial / \partial z_{1}, \partial_{2}=\partial / \partial z_{2}$, we have

$$
\begin{equation*}
-\Delta^{\kappa}=\left(z_{1}^{2}-3 z_{2}\right) \partial_{1}^{2}+\left(z_{2}^{2}-3 z_{1}\right) \partial_{2}^{2}+\left(z_{1} z_{2}-9\right) \partial_{1} \partial_{2}+(3 \kappa+1)\left(z_{1} \partial_{1}+z_{2} \partial_{2}\right) \tag{6.3}
\end{equation*}
$$

Note that Δ^{κ} is self-adjoint in the space of functions $f(z, \bar{z})$ with the norm [5]

$$
\begin{aligned}
& \|f\|_{\kappa}^{2}=\int_{D}|f(z, \bar{z})|^{2}(w(z, \bar{z}))^{\kappa} \mathrm{d} z \mathrm{~d} \bar{z} \quad \kappa>-\frac{1}{3} \\
& w(z, \bar{z})=-z^{2} \bar{z}^{2}+4 z^{3}+4 \bar{z}^{3}-18 z \bar{z}+27
\end{aligned}
$$

where D is a bounded domain defined by the curve $w(z, \bar{z})=0$.

The polynomial $P_{p q}^{\kappa}\left(z_{1}, z_{2}\right)$ has the form
$P_{p q}^{\kappa}=\sum_{m n} C_{m n}^{p q}(\kappa) z_{1}^{m} z_{2}^{n} \quad m+n \leqslant p+q \quad m-n \equiv p-q(\bmod 3)$.
From (4.3) and (6.3) one can find a few first coefficients of $P_{p q}^{\kappa}\left(z_{1}, z_{2}\right)$

$$
\begin{align*}
& C_{p+1, q-2}^{p, q}(\kappa)=-\frac{q(q-1)}{\kappa+q-1} \quad C_{p-2, q+1}^{p, q}(\kappa)=-\frac{p(p-1)}{\kappa+p-1} \tag{6.5}\\
& C_{p-1, q-1}^{p q}(\kappa)=-\frac{p q\left(3 \kappa^{2}+\alpha \kappa+\beta\right)}{(\kappa+p-1)(\kappa+q-1)(2 \kappa+p+q-1)} \tag{6.6}
\end{align*}
$$

Here $\alpha=-[2 p q-3(p+q)+4]$ and $\beta=-(p+q-1)(p-1)(q-1)$.
By using (6.5) and (6.6) we obtain the explicit expression for coefficients $a_{m n}(\kappa)$ and $b_{m n}(\kappa)$ in (6.1)

$$
\begin{align*}
a_{m n} & =\frac{n(n+m+\kappa)(n-1+2 \kappa)(n+m-1+3 \kappa)}{(n+\kappa)(n+m+2 \kappa)(n-1+\kappa)(n+m-1+2 \kappa)} \tag{6.7}\\
b_{m n} & =\frac{m(m-1+2 \kappa)}{(m+\kappa)(m-1+\kappa)} \tag{6.8}
\end{align*}
$$

and than the recursive formula for $d_{m n}(\kappa)$:

$$
\begin{equation*}
3 d_{m n}(\kappa)=d_{m+1, n}(\kappa)+a_{m, n}(\kappa) d_{m, n-1}(\kappa)+b_{m, n}(\kappa) d_{m-1, n+1}(\kappa) \tag{6.9}
\end{equation*}
$$

We have also

$$
\begin{equation*}
d_{0,0}(\kappa)=1 \quad d_{1,0}(\kappa)=d_{0,1}(\kappa)=3 \quad d_{1,1}(\kappa)=6 \frac{3 \kappa+1}{2 \kappa+1} \tag{6.10}
\end{equation*}
$$

Solving the recursive relation (6.9) with the initial condition (6.10) we obtain the explicit expression for $d_{m n}(\kappa)$ which is the κ-deformed Weyl formula for the dimension of irreducible representations of the Lie algebra A_{2}
$d_{m n}(\kappa)=\frac{(2 \kappa)_{m}(2 \kappa)_{n}(3 \kappa)_{m+n}}{(\kappa)_{m}(\kappa)_{n}(2 \kappa)_{m+n}} \quad(\kappa)_{n}=\kappa(\kappa+1) \ldots(\kappa+n-1)$.
A more detailed version of this letter will be published elsewhere.
In conclusion, I would like to thank the Department of Theoretical Physics of Zaragoza University for the hospitality.

References

[1] Calogero F J 1971 J. Math. Phys. 12 419-36
[2] Harish-Chandra 1958 Am. J. Math. 80 241-310 Harish-Chandra 1958 Am. J. Math. 80 553-613
[3] Helgason S 1978 Differential Geometry, Lie Groups and Symmetric Spaces (New York: Academic)
[4] Humphreys J E 1972 Introduction to Lie Algebras and Representation Theory (New York: Springer)
[5] Koornwinder T 1974 Proc. Ned. Acad Wet. A 77 48-66 Koornwinder T 1974 Proc. Ned. Acad Wet. A 77 357-81
[6] Lassalle M 1989 C. R. Acad. Sci. 309 941-4
[7] Macdonald I G 1988 Orthogonal polynomials associated with root systems Preprint
[8] Olshanetsky M A and Perelomov A M 1977 Lett. Math. Phys. 2 7-13
[9] Olshanetsky M A and Perelomov A M 1978 Funct. Anal. Appl. 12 121-8
[10] Olshanetsky M A and Perelomov A M 1983 Phys. Rep. 94 313-404
[11] Onishchik A L and Vinberg E B 1990 Lie Groups and Algebraic Groups (Berlin: Springer)
[12] Sekiguchi J 1977 Publ. RIMS Kyoto Univ. Suppl. 12455
[13] Stanley R P 1989 Adv. Math. 77 76-115
[14] Sutherland B 1972 Phys. Rev. A 4 2019-21
[15] Vilenkin N Ja 1968 Special Functions and the Theory of Group Representations (Am. Math. Soc. Transl. Monographs 22) (Providence, RI: American Mathematical Society)
[16] Vretare L 1976 Math. Scand. 39 343-58
[17] Vretare L 1984 SIAM J. Math. Anal. 15 805-33
[18] Weyl H 1925 Math. Zs. 23 271-309
Weyl H 1926 Math. Zs. 24 328-95

[^0]: \dagger On leave of absence from Institute for Theoretical and Experimental Physics, 117259 Moscow, Russia. E-mail address: perelomo@posta.unizar.es

