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LETTER TO THE EDITOR

Quantum integrable systems and Clebsch–Gordan series. I

A M Perelomov†
Depto. F́isica Téorica, Univ. de Zaragoza, 50009 Zaragoza, Spain

Received 22 May 1997, in final form 10 October 1997

Abstract. The class of quantum integrable systems associated with root systems was introduced
as a generalization of the Calogero–Sutherland systems. In this letter, a new property of such
systems is proved to be valid. Namely, in the case of the potentialv(q) = sin−2 q, the series
for the product of two wavefunctions coincides with the Clebsch–Gordan series. This gives the
recursive relations for the wavefunctions of such systems and for generalized spherical functions
related to them on symmetric spaces.

One conjectures that the Clebsch–Gordan series is also unchanged under more general
two-parametric deformation ((q, t)-deformation).

1. Introduction

The class of quantum integrable systems associated with root systems was introduced in
[8] (see also [9]) as the generalization of the Calogero–Sutherland systems [1, 14]. Such
systems depend on one real parameterκ (the typeA–D–E), on two parameters (the type
Bn,Cn, F4 andG2) and on three parameters for the typeBCn. These parameters are related
to the coupling constants of the quantum system.

The change of parameters defines a deformation of Weyl formulae [18] for characters
of the compact simple Lie groups (κ = 1) and correspondingly for zonal spherical functions
on symmetric spaces [2, 3] (at special values ofκ, for exampleκ = 1

2, 2, 4).
This class has many remarkable properties. We only mention that the wavefunctions

of such systems are a natural generalization of special functions (hypergeometric functions)
for the case of several variables. The history of the problem and some results can be found
in [10]. Here we shall consider another such property: the product of two wavefunctions is
a finite linear combination of analogous functions, namely of functions which appeared in
the corresponding Clebsch–Gordan series. In other words, this deformation (κ-deformation)
does not change the Clebsch–Gordan series. For the rank 1, we get the well-known cases
of the Legendre, Gegenbauer and Jacobi polynomials and the limiting cases of the Laguerre
and Hermite polynomials (see for example [15]). Some other cases were considered more
recently in [5, 16, 12, 17, 7, 6, 13]. Note that this approach not only gives new results, but
also a new insight into some old ones.

We conjecture that these results remain valid for the more general (q, t)-deformation
introduced by Macdonald [7].

† On leave of absence from Institute for Theoretical and Experimental Physics, 117259 Moscow, Russia. E-mail
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2. General description

The systems under consideration are described by the Hamiltonian (for more details see
[10])

H = 1
2p

2+ U(q) p2 = (p, p) =
l∑

j=1

p2
j (2.1)

wherep = (p1, . . . , pl), pj = −i ∂
∂qj

, is a momentum vector operator, andq = (q1, . . . , ql)

is a coordinate one in thel-dimensional vector spaceV ∼ Rl with the standard scalar
product (α, q). They are a generalization of the Calogero–Sutherland systems [1, 14] for
which {α} = {ei − ej }, {ej } is a standard basis inV . The potentialU(q) is constructed by
means of the certain system of vectorsR+ = {α} in V (the so-called root system):

U =
∑
α∈R+

g2
αv(qα) qα = (α, q) g2

α = κα(κα − 1). (2.2)

The constants satisfy the conditiongα = gβ , if (α, α) = (β, β). Such systems are completely
integrable forv(q) of five types. Here we only consider the case ofv(q) = sin−2 q.

3. Root systems

We give here only basic definitions. For more details see [4, 7, 11].
Let V be a l-dimensional real vector space with a standard scalar product( , ),

(α, β) =∑αjβj , and letsα be the reflection in the hyperplane through the origin orthogonal
to the vectorα

sαq = q − (q, α∨)α α∨ = (2/(α, α))α. (3.1)

Consider a finite set of nonzero vectorsR = {α} generatingV and satisfying the following
conditions:

(1) for anyα ∈ R, the reflectionsα conservesR: sαR = R;
(2) for all α, β ∈ R, we have(α∨, β) ∈ Z.
The set{sα} generates the finite groupW(R) (the Weyl group ofR). The root system

R is called a reduced one if only vectors inR collinear toα are±α. Let us choose the
hyperplane which does not contain the root. Then the root systemR = R+⋃R−, andR+

is the set of positive roots. InR+ there is the basis (simple roots){α1, . . . , αl} such that
any α ∈ R+, α =∑j njαj , nj > 0. The root systemR is called irreducible if it cannot be
union of two nonempty subsetsR1 andR2 which are orthogonal to each other.

Let {α1, . . . , αl} be the set of simple roots inR, R+ be the set of positive roots and
{λj } be a dual basis or the weight basis:(λj , αk) = δjk.

Let Q be the root lattice andQ+ be the cone of positive roots

Q =
{
β:β =

l∑
j=1

mjαj ,mj ∈ Z
}

Q+ =
{
γ : γ =

l∑
j=1

njαj , nj ∈ N
}
. (3.2)

Let P be the weight lattice andP+ be the cone of dominant weights:

P =
{
λ: λ =

l∑
j=1

mjλj ,mj ∈ Z
}

P+ =
{
µ:µ =

l∑
j=1

njλj , nj ∈ N
}
. (3.3)

According to [16, 7] we define a partial order onP as followsλ > µ if and only if
λ−µ ∈ Q+ (or (λ, λj ) > (µ, λj ) for all j = 1, . . . , l). The set of linear combinations over
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R of the functionsfλ(q) = exp{2i(λ, q)}, λ ∈ P, q ∈ V may be considered as the group
algebraA overR of the free Abelian groupP . For anyλ ∈ P , let eλ ∼ fλ(q) denote the
corresponding element ofA, so that eλeµ = eλ+µ, (eλ)−1 = e−λ and e0 = 1, the identity
element ofA. Then eλ, λ ∈ P form anR-basis ofA.

The Weyl groupW(R) acts onP and hence also onA : s(eλ) = esλ for s ∈ W and
λ ∈ P . Let AW denote the subalgebra ofW -invariant elements ofA. Since eachW -orbit
in P contains exactly one point inP+, the monomial symmetric functions

mλ =
∑
µ∈W ·λ

eµ λ ∈ P+ (3.4)

form anR-basis ofAW .

4. Clebsch–Gordan series

The Schr̈odinger equation for the quantum system related to the root systemR with
v(qα) = sin−2 qα, qα = (q, α) has the form

H9κ = E(κ)9κ H = −12+
∑
α∈R+

κα(κα − 1) sin−2 qα 12 =
l∑

j=1

∂2

∂q2
j

(4.1)

and for the ground-state wavefunction we have

9κ
0 (q) =

∏
α∈R+

(sinqα)
κα κα = κβ if (α, α) = (β, β)

E0(κ) = (γ, γ ) γ =
∑
α∈R+

καα. (4.2)

Substituting9κ
λ = 8κ

λ9
κ
0 we obtain

−1κ8κ
λ = ελ(κ)8κ

λ 1κ = 12+1κ
1 ελ(κ) = Eλ(κ)− E0(κ). (4.3)

Here the operator1κ
1 takes the form

1κ
1 = 1

2

∑
α∈R+
|α|2κα(cotqα)∂α ∂α = (α, ∂) |α|2 = (α, α). (4.4)

It is easy to see that1κ mapsAW into AW and

1κmλ = (λ+ 2ρ(κ), λ)mλ + lower terms 2ρ(κ) =
∑
α

καα, α ∈ R+. (4.5)

So ελ(κ) = (λ+ 2ρ(κ), λ) and 8κ
λ =

∑
µ6λ

C
µ
λ (κ)mµ µ ∈ P+.

From this,

8κ
λ8

κ
µ =

∑
ν6λ+µ

Cνλµ(κ)8
κ
ν ν ∈ P+. (4.6)

In fact, we could obtain a stronger condition by using the orthogonality properties of8κ
λ(q)

which follow from the self-adjointness of the operatorH∫
8̄κ
λ(q)8

κ
ν (q) dµ(q) = 0 if λ 6= µ dµ (q) = |9κ

0 (q)|2 dlq. (4.7)

Namely,

Cνµλ(κ) = 0 if
∫
8̄κ
ν8

κ
λ8

κ
µ dµ(q) = 0. (4.8)
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But 8̄κ
ν is the eigenfunction of1κ and hence should have the form8κ

ν̃
. So

8κ
µ8

κ
λ =

∑
λ−µ̃6ν6λ+µ

Cνµλ(κ)8
κ
ν ν ∈ P+ (4.9)

or

8κ
µ(q)8

κ
λ(q) =

∑
ν∈D1(µ,λ)

Cνµλ(κ)8
κ
ν (q) ν ∈ P+. (4.10)

HereD1(µ, λ) is the set ofν defined by conditions

λ+ µN 6 ν 6 λ+ µ1 ν ∈ P+ (4.11)

µ1 = µ is the highest weight andµN is the lowest weight of the weight diagramDµ defined
by µ.

Note that in the case when allν ∈ P+

D1(µ, λ) ⊃ Dµ(λ) (4.12)

whereDµ(λ) is defined by the formula

Dµ(λ) = (Dµ + λ) ∩ P+. (4.13)

HereDµ is the weight diagram defined by the dominant weightµ = µ1.
As it was shown in [16] the set ofν in (4.9) for all s ∈ W should satisfy the condition

ν = λ+ µ̃ λ+ µN 6 λ+ sµ̃ 6 λ+ µ1 s ∈ W. (4.14)

Lemma.Let the weightσ satisfies the condition

µN 6 sσ 6 µ1 (4.15)

for all s ∈ W . Thenσ belongs to the weight diagramDµ,µ = µ1.

Proof. It is evident that ifσ ∈ Dµ, then sσ also belongs toDµ and condition (4.15) is
satisfied. Let us suppose now thatσ 6∈ Dµ, but

µN 6 σ 6 µ1

and consider the setOσ = {σj } = {sjσ : sj ∈ W }. Let σ1 be the highest weight andσM be
the lowest weight inOσ . Thenσ1 = s1σ ∈ P+ andσ1 > µ1; σM = sMσ andσM < µN .
In other words, in this caseσ1 defines the weight diagramDσ1 such thatσ1 > µ1 which
contradicts (4.15). �

Theorem 1.The κ-deformed Clebsch–Gordan series has the form

8κ
µ8

κ
λ =

∑
ν∈Dµ(λ)

Cνµλ(κ)8
κ
ν (4.16)

or

8κ
µ8

κ
λ =

∑
ν∈Dλ(µ)

Cνµλ(κ)8
κ
ν . (4.17)
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5. A1 case

In this case, the representation is characterized by the integer non-negative numberl, and
we have the differential equation for8κ

l

−((8κ
l )
′′ + 2κ cotx(8κ

l )
′) = εl(κ)8κ

l f ′ = df/dx. (5.1)

The solution normalized by the condition8κ
l (0) = 1 has the form

8κ
l (x) = cl(κ)P κl (z) z = 2 cosx P κl ∼ zl at z→∞ (5.2)

whereP κl (z) ∼ Cκl (z/2) andCκl (z) is the Gegenbauer polynomial.
The κ-deformed Clebsch–Gordan series now takes the form

P κm(z)P
κ
n (z) =

m+n∑
l=|m−n|

Clmn(κ)P
κ
l (z) (5.3)

wherel has the same parity as(m+n). The coefficientsClmn(κ) may be calculated explicitly.
For the simplest case we have

zP κn (z) = P κn+1(z)+ an(κ)P κn−1(z) an(κ) = n(n− 1+ 2κ)

(n− 1+ κ)(n+ κ) . (5.4)

The quantitydn(κ) = c−1
n (κ) = P κn (2) may be considered as aκ-deformed dimension of

irreducible representations of the Lie algebraA1. We havedn+1(κ) = 2dn(κ)−an(κ)dn−1(κ),
d0 = 1, d1 = 2. From this, we obtaindn(κ) = (2κ)n/(κ)n, where(κ)n = (κ)(κ+1) . . . (κ+
n− 1), (κ)0 = 1.

6. A2 case

In this case, the function8κ
µ is determined by two integer non-negative numbersm and

n:µ = mλ1 + nλ2, whereλ1 andλ2 are two fundamental weights. Also it is a solution of
(4.3) with εmn = m2+ n2+mn+ 3κ(m+ n), 8κ

mn = cmn(κ)P κmn;P κmn = mµ+ lower terms.
The Clebsch–Gordan series forP κµ(z1, z2) is given by formula (4.16).

Let us give an example forP κµ = P κ1,0 = z1:

z1P
κ
m,n = P κm+1,n + am,n(κ)P κm,n−1+ bm,n(κ)P κm−1,n+1 (6.1)

wheream,n(κ), bm,n(κ) are rational functions ofκ. The formula forP κ01P
κ
mn is analogous.

Note thatP κ1,0 ≡ P 1
1,0, P κ0,1 ≡ P 1

0,1, i.e. do not depend onκ.
So we could expressP κm,n+1 throughP κkl for l 6 n, andP κm+1,n throughP κkl for k 6 m,

correspondingly.
To find the coefficientsamn(κ), bmn(κ) we consider equation (4.3) in new variablesz1

andz2 which are characters of two fundamental representations ofA2

z1 = exp(2iq1)+ exp(2iq2)+ exp(2iq3) z2 = z̄1. (6.2)

Denoting the derivatives∂1 = ∂/∂z1, ∂2 = ∂/∂z2, we have

−1κ = (z2
1 − 3z2)∂

2
1 + (z2

2 − 3z1)∂
2
2 + (z1z2− 9)∂1∂2+ (3κ + 1)(z1∂1+ z2∂2). (6.3)

Note that1κ is self-adjoint in the space of functionsf (z, z̄) with the norm [5]

‖f ‖2
κ =

∫
D

|f (z, z̄)|2(w(z, z̄))κ dz dz̄ κ > − 1
3

w(z, z̄) = −z2z̄2+ 4z3+ 4z̄3− 18zz̄+ 27

whereD is a bounded domain defined by the curvew(z, z̄) = 0.
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The polynomialP κpq(z1, z2) has the form

P κpq =
∑
mn

Cpqmn(κ)z
m
1 z

n
2 m+ n 6 p + q m− n ≡ p − q(mod 3). (6.4)

From (4.3) and (6.3) one can find a few first coefficients ofP κpq(z1, z2)

C
p,q

p+1,q−2(κ) = −
q(q − 1)

κ + q − 1
C
p,q

p−2,q+1(κ) = −
p(p − 1)

κ + p − 1
(6.5)

C
pq

p−1,q−1(κ) = −
pq(3κ2+ ακ + β)

(κ + p − 1)(κ + q − 1)(2κ + p + q − 1)
. (6.6)

Hereα = −[2pq − 3(p + q)+ 4] andβ = −(p + q − 1)(p − 1)(q − 1).
By using (6.5) and (6.6) we obtain the explicit expression for coefficientsamn(κ) and

bmn(κ) in (6.1)

amn = n(n+m+ κ)(n− 1+ 2κ)(n+m− 1+ 3κ)

(n+ κ)(n+m+ 2κ)(n− 1+ κ)(n+m− 1+ 2κ)
(6.7)

bmn = m(m− 1+ 2κ)

(m+ κ)(m− 1+ κ) (6.8)

and than the recursive formula fordmn(κ):

3dmn(κ) = dm+1,n(κ)+ am,n(κ)dm,n−1(κ)+ bm,n(κ)dm−1,n+1(κ). (6.9)

We have also

d0,0(κ) = 1 d1,0(κ) = d0,1(κ) = 3 d1,1(κ) = 6
3κ + 1

2κ + 1
. (6.10)

Solving the recursive relation (6.9) with the initial condition (6.10) we obtain the explicit
expression fordmn(κ) which is theκ-deformed Weyl formula for the dimension of irreducible
representations of the Lie algebraA2

dmn(κ) = (2κ)m(2κ)n(3κ)m+n
(κ)m(κ)n(2κ)m+n

(κ)n = κ(κ + 1) . . . (κ + n− 1). (6.11)

A more detailed version of this letter will be published elsewhere.

In conclusion, I would like to thank the Department of Theoretical Physics of Zaragoza
University for the hospitality.
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